Here is a list of some the formulae that we've seen so far:

For general energy processes:

$$TE = KE + GPE + E_{other forms}$$
 $P = \frac{\Delta E}{\Delta t}$

$$W = F d \qquad KE = \frac{1}{2} m v^2 \qquad GPE = m g h$$

General efficiency, any process:

$$e = efficiency = \left(\frac{W_{output}}{E_{input}}\right) (100\%)$$

For heat engines:

$$e = \left(\frac{W_{output}}{E_{input}}\right) (100\%) = \left(1 - \frac{Q_{cold}}{Q_{hot}}\right) (100\%)$$

Theoretical maximum efficiency (heat engine, with T in Kelvins):

$$e_{Car}$$
 = carnot efficiency = $(1 - \frac{T_{cold}}{T_{hot}})(100\%)$

For energy processes involving heat: For temperature changes:

For phase changes:

$$Q = m c \Delta T \qquad \qquad Q = m L$$

Temperature conversion:

$$C^{o} = \frac{5}{9}(F^{0} + 32)$$
 $F^{o} = \frac{9}{5}C^{o} + 32$

General motion equations:

$$v = \frac{d}{t} = \frac{\Delta d}{\Delta t}$$
 $F_{NET} = ma$ $F_{GRAV} = weight = mg$

Passenger efficiency:

passenger efficiency =
$$\frac{(number of passengers) x (miles traveled)}{fuel consumed}$$

Here are some of the units we've run across:

Physical Quantity	Symbol	MKS (S.I.)	English (and other)
mass	m	kg	slugs
length	x, y, z, d	m	ft, mi, yd, cm, km
force	F, W	$N \equiv kg m/s^2$	lb
speed, velocity	v	m/s	mi/hr, mph, ft/s, km/hr
acceleration	a, g	m/s ²	ft/s ² , mi/hr ²
work	W	$J \equiv kg \ m^2/s^2$	Btu, kWh, Cal, cal, Quads
energy, heat	E, TE, GPE, Q	$J \equiv kg \ m^2/s^2$	Btu, kWh, Cal, cal, Quads
power	Р	$W \equiv J/s$	hp